Assigned: Tuesday 20 September 2011

Due: Monday 26 September 2011, 11:59 p.m.

Objectives:

- Understand adversarial search implementations
- Explore performance implications of game heuristics

Collaboration: This laboratory will be completed in pairs assigned by the instructor.

1 Introduction

Mancala is “count and capture” game dating back to sixth century Africa that is still played worldwide. While the rules are fairly simple, it does require sophisticated foresight to achieve successful play. In this assignment, you are called upon to create an agent that will compete against world Mancala champion Jen Kennings. How will you do it? The search tree for optimal game play is hopelessly large and deep (at least for our MathLAN machines), so something more clever is required. Fortunately, we’ve just learned about $\alpha-\beta$ pruning for minimax search algorithms. Now all we need is a solid implementation and a reasonable evaluation function for a game board state.

1.1 Game play

Mancala is a two player game, where each player has 6 “holes” that each start with four stones in them and one larger hole called the mancala. Taking turns, a player removes all of the stones from one of his or her holes (excluding the mancala) and deposits them one by one in other holes on the board in a counter-clockwise direction. Along the way, stones may be deposited in the player’s own mancala, but the opponent’s mancala is skipped. If the last stone is deposited in an empty hole belonging to the player, all of the stones in the opponent’s adjacent hole are captured (along with the singleton in the previously empty hole) and moved to the player’s mancala. The goal of the game is to end up with the most stones in your mancala (and potentially remaining in the other holes). The game ends when one player has no available moves.\(^1\)

\begin{center}
\begin{tabular}{cccccccc}
() & (4) & (4) & (4) & (4) & (4) & (4) & (4) \\
(0) & 12 & 11 & 10 & 9 & 8 & 7 & () \\
() & (4) & (4) & (4) & (4) & (4) & (4) & (4) \\
(0) & 0 & 1 & 2 & 3 & 4 & 5 & () \\
\end{tabular}
\end{center}

The figure above shows children in Cambodia playing a version of the game. On the right is a textual representation of the board including hole numbers and the two mancala bins on the left and right sides.

\(^1\)In true mancala play, dropping the last stone into the mancala would garner another turn. Since that makes minimax search somewhat more complicated, we will ignore this rule, allowing strict alternation.
2 Code and environment

For this assignment, you will need to copy some starter code from the MathLAN directory:

~weinman/courses/CSC261/code/adversarial

2.1 Game interface

In order to promote code reuse, the search routine you will write takes a generic interface we’re calling a game (defined in the file game.scm.) The two procedures encapsulated within a game value that you will need for search are

(game-successor-fun game) the successor function for a game state (giving the actions available to the player whose turn it is along with the resulting states), and

(game-terminal? game) the terminal predicate for identifying when the game has ended.

Other encapsulated procedures include

(game-win? game) a “win” predicate for identifying who has won the game,

(game-starting-state game) a starting state for the game,

(game-display-fun game) a display procedure for a game state, and

(game-play game player1 player2) a game play engine for pitting two decision procedures, player1 and player2, against each other.

You may examine the the corresponding procedures documentation for greater details.

We will be using the following example games:

barranca.scm, for which it is reasonable to manually generate and trace an entire search tree to verify the searches, as we have done in class

tictactoe.scm, for which it is computationally feasible to run a complete MINIMAX search, and

mancala.scm, for which alpha-beta search with cutoff is required.

2.2 Adversarial search

2.2.1 Minimax search

The file minimax.scm contains a complete implementation of minimax search. The function make-minimax-player is simply a “functor” (a procedure that returns a procedure) for creating a player procedure that takes a state and produces an action, which is determined using minimax search. The minimax-search procedure takes a game, the current state, and a utility function (for a particular player), and it produces the optimal action by calling max-value. The procedure max-value takes a game and a state of the game. It determines the best action and its value, both of which are stored in the returned pair. The best action is determined by recursively calling min-value, which behaves similarly. When max-value returns to minimax-search, the optimal action is given by taking the car of the action-value pair produced by max-value.

Some built-in display code that may be enabled by setting the value DO-DISPLAY at the top of the minimax.scm file to #t. This will allow you to see the utility of terminal states, and the actions and values for each max and min node in the tree. (It is not recommended you do this for tic-tac-toe, though.)

The file cutoff-minimax.scm employs the cutoff strategy suggested by the text (cf., AIMA 5.4.2). This implementation is similar to the routines in minimax.scm except that they use a state evaluation heuristic function, rather than a utility function, and only search to a given number of plies.
2.2.2 Alpha-Beta search

The file alphabeta.scm contains skeletons and specifications for the two procedures you are to write. These are similar in nature to the examples in minimax.scm and cutoff-minimax.scm with a few key differences. Your recursive routines will require the α and β values, as well as keeping track of the search depth, so that an evaluation function can be applied.

Just like make-cutoff-minimax-player, the provided procedure make-alpha-beta-player creates a player that uses a particular evaluation function and searches to a depth of a given number of plies. The alpha-beta-search procedure begins the search for a maximizing action.

You will complete the definitions of alpha-beta-max-value and alpha-beta-min-value. Of course, these are so similar that implementing one practically gives you the other.

We will have more to say about how evaluation-fun examines a state and calculates a score in a moment.

2.3 Mancala game

The file mancala.scm provides an implementation of the rules given above that meets the game interface specification. The only details you will need to worry about (eventually) are the displayed board format shown on the first page (if you care to see how the game is being played) and the actual state representation in Scheme for writing an evaluation procedure.

3 Assignment

Problem 1 - Creating an evaluation function [50 points]

Part A

Our in-class lab looks at a board heuristic that is too simple; it ignores many important aspects of the end game until it is too late. Your first task is to write a better evaluation function best-mancala-eval

```scheme
(define best-mancala-eval
  (lambda (player)
    (lambda (state)
      ...
    ))
```

Things that you may want to consider include

- number of stones in your player’s mancala
- the total number of stones on your player’s side of the board,
- the number of empty holes on your player’s side of the board
- board configurations that can lead to large gains (or losses)
- or anything else you might think of.

Experiment with several different heuristics, systematically testing them to determine which seems to work best. You can test these heuristics with the cutoff-minimax-search provided as well as the alpha-beta pruning implementation you will complete.

Part B

Write a short essay about how you chose your evaluation function. What things did you try? What worked well and what didn’t? Explain how you determined what works well.

The audience for your essay is your class peers. That being the case, you still ought to briefly introduce the problem and context.
Problem 2 - Implementing alpha-beta pruning [50 points]

Part A

Using the procedures in minimax.scm and/or cutoff-minimax.scm as potential guides, implement alpha-beta-max-value and alpha-beta-min-value for alpha-beta search as specified in alphabeta.scm and described in AIMA Figure 5.7. Like max-value in minimax.scm, and cutoff-max-value in cutoff-minimax.scm alpha-beta-max-value returns both the optimal action and its value in a pair.

Remember that MINIMAX search expands the entire search tree. Since we may not always be able to search a game tree all the way to terminal states, we will need to impose a cutoff test limiting the number of plies that are searched. Just as in cutoff-minimax.scm, every transition from a MIN node to a MAX node increases the depth (number of plies) of the search.

Part B

You will need to test your alpha-beta search on something simpler than mancala. Fortunately, you also have barranca and tic-tac-toe. Using either of these games, carefully test your algorithm by calculating the utility values of various states, making sure your search is returning the correct move and pruning the search tree appropriately.

Write a statement including at least one example that illustrates your search routines correctly prune the search tree.

For example, consider the example barranca game \((n = 4, k = 7)\) whose search tree you will trace in the in class lab; it is illustrated (in part) below.

![Search Tree Diagram]

Player 1 (max) has started by choosing 1. At the MAX node labeled B, player 2 has found the result of choosing the number 2. After this, the MIN node labeled A should have updated \(\beta = -1\). It then proceeds to calculate the max value for C, with \(\beta = -1\). Once the MIN node labeled D returns the value 0, node C knows that the value it returns will be at least 0, but in fact \(0 > \beta = -1\). Because the result is necessarily higher than the other option that the parent MIN node A already has, there is no need to examine the other option. Thus, we may prune the remaining successor of C, which corresponds to choosing 4.
To write this up, one might add a display/printf statements to the code that produce such an informative output, such as:

...
MAX state (#t (1) (3) (2 4)) Entrance for state C
MIN state (#f (2 1) (3) (4)) Entrance for state D
MAX state (#t (2 1) (4 3) ()) Entrance for state E
MAX value 0 Value of state E
MIN value 0 Value of state D
beta=-1.0: prune Discontinuation in state C
MAX value 0 Value of state C
...

Your statement should also explain what is happening, as in the example above and in the output annotations. You must choose a different example for demonstrating the correctness of your code, though you may use any game you like. Significant credit will be attributed to the quality and clarity of your explanation. Be sure you understand this example so you are able to produce your own. In your submitted code, leave any display lines in place but commented out.

Mancala tournament

Though no part of your grade will be dependent on it, a tournament using your own mancala players will be conducted. Somewhere in your submitted files you should define username-mancala-best-player1 and username-mancala-best-player2 using your evaluation procedure best-mancala-eval and whatever search routine you choose. However, each call to your player must take no longer than 10 seconds nor search deeper than 5 plies. Any player procedure that violates these constraints will be disqualified. The winner will gain bragging rights and (subject to availability) some sort of prize.

What to turn in

Your submission should include the following:

- Your completed alphabeta.scm file
- A .scm file with your mancala heuristic best-mancala-eval defined.
- A short driver program that demonstrates your procedures are correct
- A single PDF containing (merged)
 - Your Scheme files
 - A transcript of your test driver program’s output
 - Your evaluation function essay
 - Your $\alpha - \beta$ test explanation