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RQI: How well
does a VL model
designed for object
detection perform at
keypoint detection?

NABIrds:

* 50K images

* 400 species

* || keypoints

Names: bill. crown. nape. left eye. right eye. belly. breast. back. tail. left wing. right wing.
Symbols: f. ¢ h. k. m. n p. g r w v



Fvaluation

Metric False Positives Dist. Threshold

PCK X lgnored X Fixed

COCO IOU | v Precision v Sweeps X for boxes

COCO OKS | x lgnored / Sweeps anngtator
variance
OKS mAP | v Precision v Sweeps  anisotropic

variance




Evaluation

OKS mAP

&Precision penalizes
false positives

dmMAP sweeps
distance thresholds

g Anisotropic distance
threshold varies
with annotator
variation
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RQ2: Does adding
descriptive attributes
black nape to keypoint names

Dlack crown improve performance!
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CUB Descriptive Keypoint Attributes

bill |€ﬂgth / Shape / CO|OI”(S) short all-purpose grey bill. long needle black bill.
crown CO OI”(S) black and white crown. blue crown.

nape CcO OI”(S) black and white nape. brown and black nape. buff nape.
eye CO OI”(S) black and red left eye. black right eye. yellow right eye.
oelly pattern / color(s) striped brown and white belly. solid belly.

oreast hattern / co OF(S) striped yellow and black breast. white breast.

back hattern / co OI"(S) striped brown black and buff back. solid blue back.

tall battern / shape / color(s) solid notched tail. notched brown tail.

wing battern / shape / color(s)  spotted pointed black and white left wing
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Conclusions

*Vision+lLanguage models can excel at object
Keypoint detection

* Descriptive attributes leverage language and
improve results
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Future Work

*Jointly train with object detection

*Incorporate fine-grained species classification

(“barn swallow" vs."tree swallow vs. cliff swallow” vs.
“violet-green swallow" vs. " “northern rough-winged swallow")
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Validation Data
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