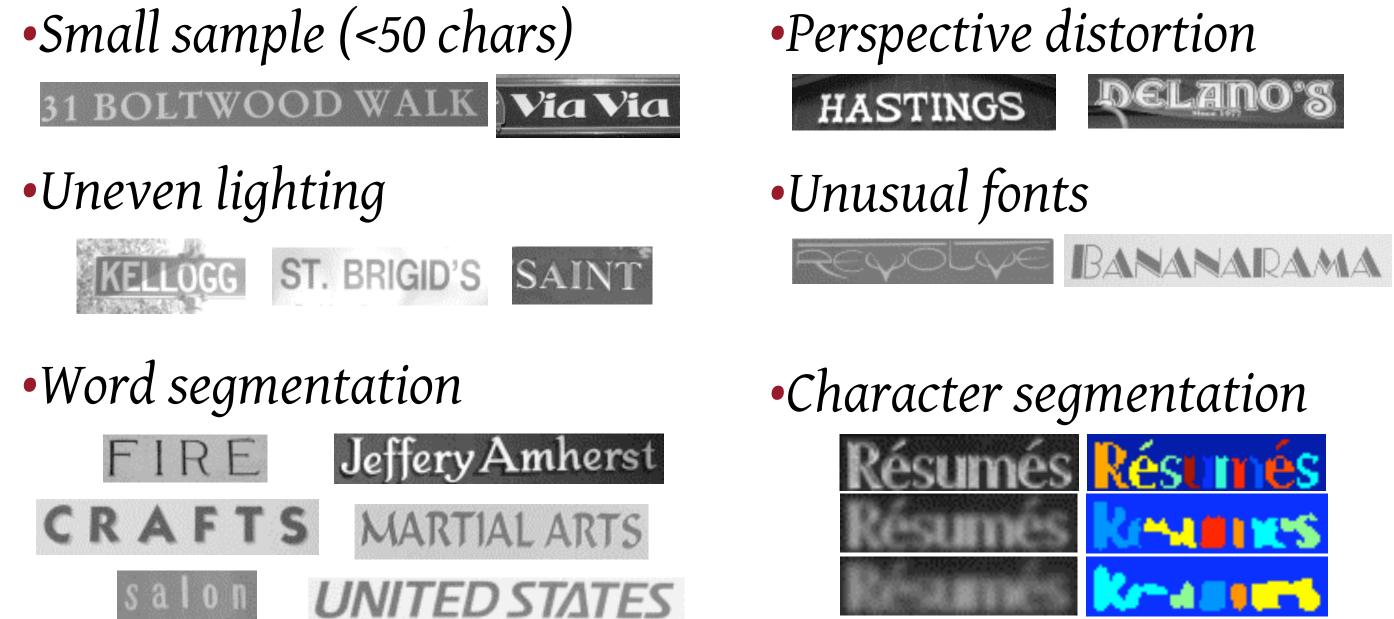


Problem and Motivation

Our goal: Read text from images of the everyday world.

Applications include: •Aid to visually impaired Photo annotation Portable translation

Many new challenges are atypical of OCR page readers:



Previous work has assumed word boundaries, character segmentations, and/or known lexicon words. The conditions above make these assumptions problematic.

We propose a model that integrates lexical decision and both word and character segmentation with recognition.

Semi-Markov Model

We use a discriminatively trained semi-Markov model for recognition. Like a CRF, it models dependencies between states. It has the additional property of modeling the duration of a state, i.e., character.

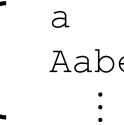
$$p(\mathbf{y}|\mathbf{x};\vec{\theta}) = \frac{1}{Z(\mathbf{x})} \exp\left\{U(\mathbf{y},\mathbf{x};\vec{\theta})\right\}$$

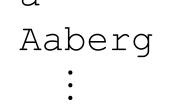
Model parameters θ can be learned from labeled training data.

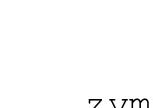
The exponent (U) is composed of functions that score a segmentation and labeling (y) of a text image (x) using:

•Appearance

•Lexicon



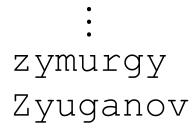


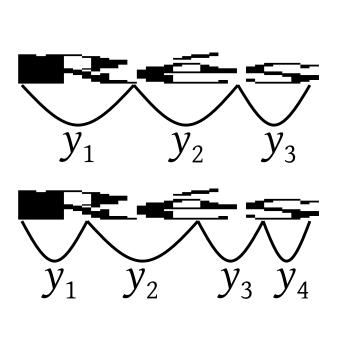


• • •

A Discriminative Semi-Markov Model for Robust Scene Text Recognition Jerod J. Weinman, Erik Learned-Miller, and Allen R. Hanson Computer Vision Laboratory, Dept. of Computer Science, University of Massachusetts Amherst

•*Bigrams* $P(TH | English) = \frac{39}{1000}$ $P(QU | English) = \frac{1.4}{1000}$ $P(QA | English) = \frac{.0001}{1000}$





Parse Scoring

A text image is parsed, or divided into labeled segments. Parses may differ in the number of segments, and the states y_i may differ in width.

 $U^{A}(y_{i},\mathbf{x})$ Appearance Every possible parse segment is scored by a discriminant U^A for character appearance and width.

 $U^{B}(y_{i}, y_{i+1})$ Bigrams Each pair of neighboring segments get a bigram score U^{B} .

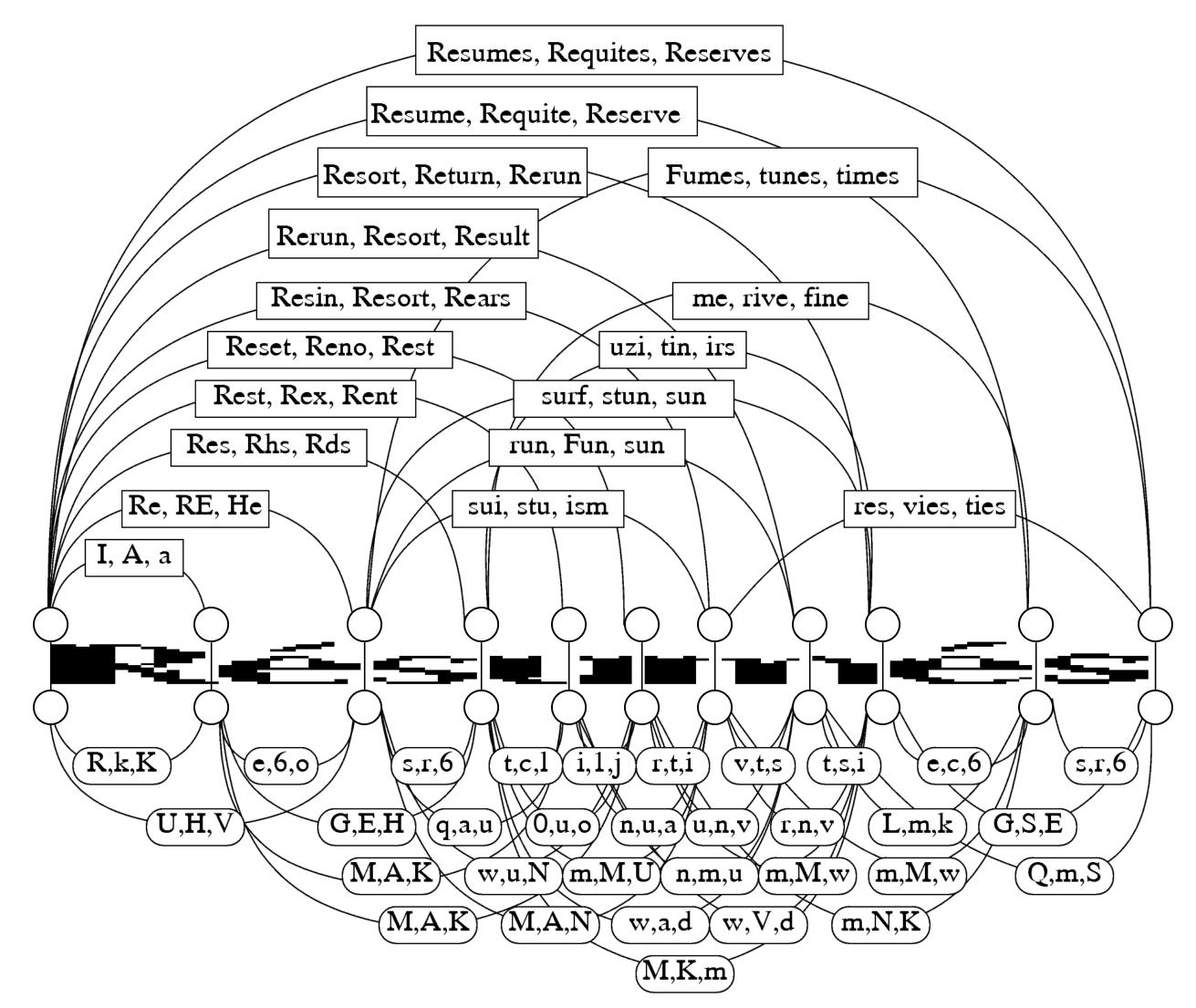
Lexicon

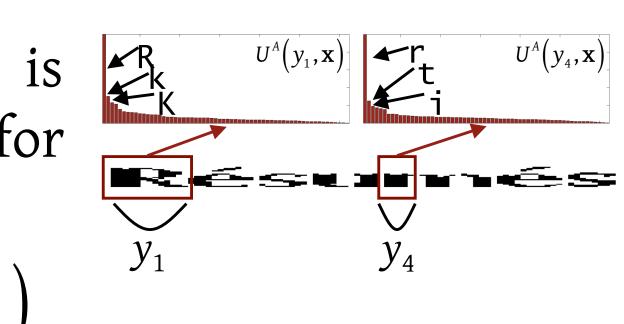
A character invariant U^L replaces U^B in sequences forming lexicon words to promote known word recognition.

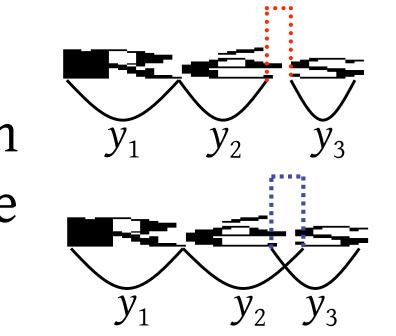
Parse Gap/Overlap $U^{P}(y_{i}, y_{i+1}, \mathbf{x})$ Neighboring states may have a gap or an overlap, as in the case of ligatures. These are also scored using image features.

Interpretation Graph

All possible parses can be represented by a weighted graph. Dynamic programming can be used to find the optimal path, or the best interpretation of the image.





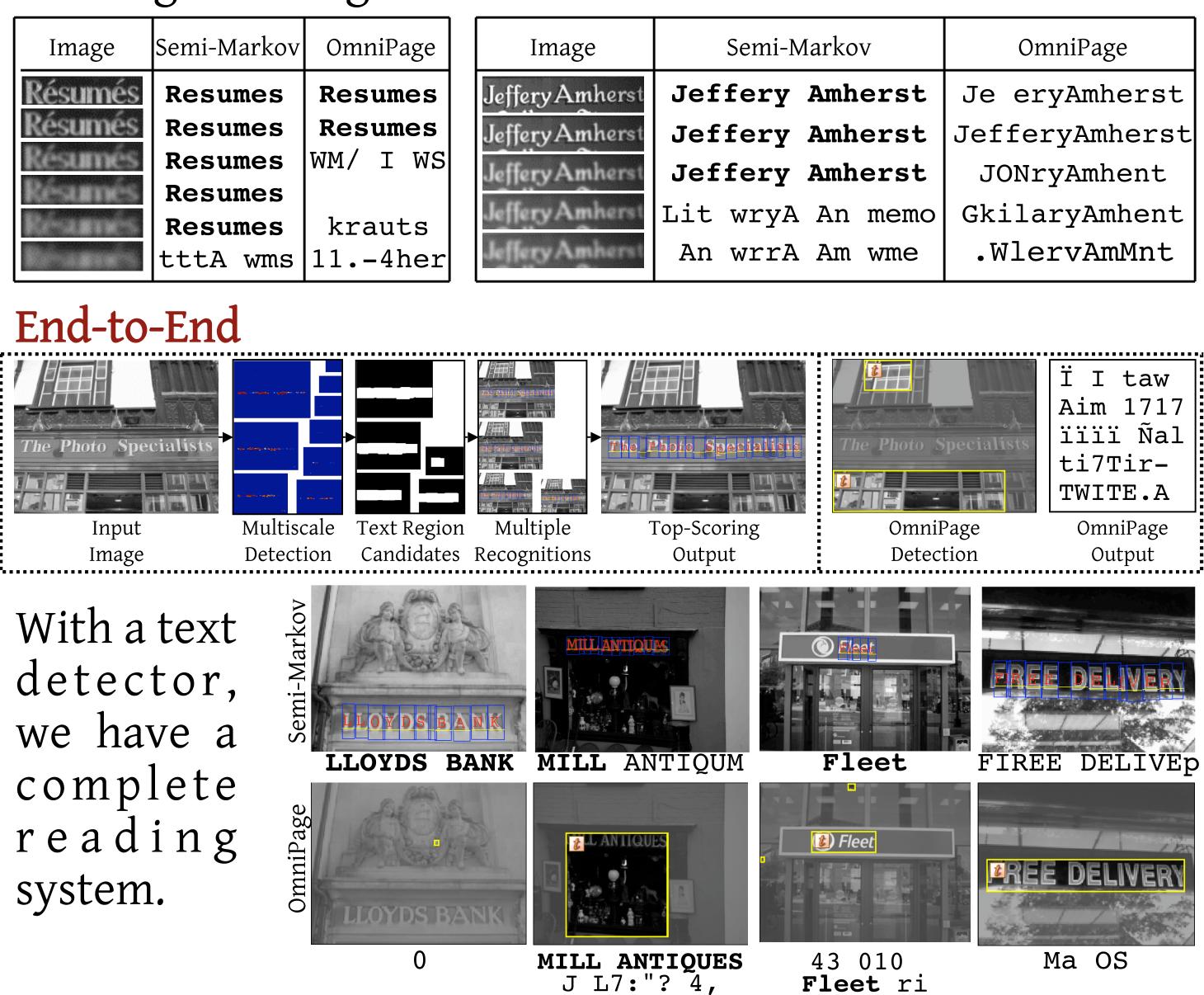


Training

Evaluation

85 sign images of 1,144 characters at ~12 pixel x-height.							
No Lex.	Allowing words both in and out of						
Forced Lex.							
Mixed	the lexicon reduces error by 13%.						
0 0.05 0.1 0.15 0.2							
Original	Semi-Markov	Binary	OmniPage	System	Char		
Image	Model Output	Image	Output	System	Err.		
First	First	First	Ella	OmniPage	23.5%		
COFFEE	COFFEE	COFFEE HOUSE		OmniPage +	1 (())		
DOLIGLASS	HOUSE Douglass	DOUGLASS	Maus uucL,ass	Binarized	16.6%		
Free checking,	Free checking		Free ehe in	Semi-	4.5.00/		
LIBRARY	LIBRARY	LIBRARY	LIBRFIRY	Markov	15.0%		
AMHERST	AMHERST	AMHERST	A),1HERbT	<i>Above:</i> Our			
TAVERN	TAVERN	TAVERN	TAVF				
Fleet	Fleet	Fleet		model redu	lces		
CHURCH	CHURCH	CHURCH	EMI	error by 10	%.		
MONEYFLO	MONEYFLO	MONEYFLO	JUONEYFLO				
MONKEY	MONKEY	MONKEY	.010NIK EY	<i>Left:</i> Examp	les.		

Low Resolution



Experiments

• *Appearance:* Synthetic images generated from 934 fonts •*Bigrams:* 82 books from Project Gutenberg •*Lexicon:* 50th frequency percentile words from SCOWL

Integrated segmentation and recognition allow our model to recognize images at lower resolutions than trained on.

Image	Semi-Markov	OmniPage	
Jeffery Amherst	Jeffery Amherst	Je eryAmherst	
Jeffery Amherst	Jeffery Amherst	JefferyAmherst	
Jeffery Amherst	Jeffery Amherst	JONryAmhent	
Jeffery Amherst	Lit wryA An memo	GkilaryAmhent	
Jeffery Amherst	An wrrA Am wme	.WlervAmMnt	