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Problem and Motivation
Our goal: Read text from images of the everyday world.

Applications include:
•Aid to visually impaired
•Photo annotation
•Portable translation

Many new challenges are atypical of OCR page readers:
•Small sample (<50 chars) •Perspective distortion

•Uneven lighting •Unusual fonts

•Word segmentation •Character segmentation

Previous work has assumed word boundaries, character
segmentations, and/or known lexicon words. The
conditions above make these assumptions problematic.
We propose a model that integrates lexical decision and
both word and character segmentation with recognition.

Semi-Markov Model
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We use a discriminatively trained semi-Markov model for
recognition. Like a CRF, it models dependencies between
states. It has the additional property of modeling the
duration of a state, i.e., character.

Model parameters
can be learned from
labeled training data.
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The exponent (U) is composed of functions that score a
segmentation and labeling (y) of a text image (x) using:

•Appearance

•Bigrams

•Lexicon
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Parse Scoring
A text image is parsed, or divided into
labeled segments. Parses may differ in the
number of segments, and the states yi may
differ in width.y1 y2 y3 y4

y1 y2 y3

Appearance
Every possible parse segment is
scored by a discriminant UA for
character appearance and width.
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Bigrams
Each pair of neighboring segments get a bigram score UB.    
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Lexicon
A character invariant UL replaces UB in sequences forming
lexicon words to promote known word recognition.
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Parse Gap/Overlap
Neighboring states may have a gap or an
overlap, as in the case of ligatures. These
are also scored using image features.
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Interpretation Graph
All possible parses can be represented by a weighted
graph. Dynamic programming can be used to find the
optimal path, or the best interpretation of the image.

Experiments
Training
•Appearance: Synthetic images generated from 934 fonts
•Bigrams: 82 books from Project Gutenberg
•Lexicon: 50th frequency percentile words from SCOWL

Evaluation
85 sign images of 1,144 characters at  ~12 pixel x-height.
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Allowing words both in and out of
the lexicon reduces error by 13%.
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Left: Examples.

Low Resolution
Integrated segmentation and recognition allow our model
to recognize images at lower resolutions than trained on.
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