
Descriptive Attributes for Language-based Object
Keypoint Detection

Jerod Weinman1, Serge Belongie2, and Stella Frank2

1 Grinnell College, Grinnell, Iowa, USA
jerod@acm.org

2 Department of Computer Science, University of Copenhagen, Denmark

Abstract. Multimodal vision and language (VL) models have recently
shown strong performance in phrase grounding and object detection for
both zero-shot and finetuned cases. We adapt a VL model (GLIP) for
keypoint detection and evaluate on NABirds keypoints. Our language-
based keypoints-as-objects detector GLIP-KP outperforms baseline top-
down keypoint detection models based on heatmaps and allows for zero-
and few-shot evaluation. When fully trained, enhancing the keypoint
names with descriptive attributes gives a significant performance boost,
raising AP by as much as 6.0, compared to models without attribute in-
formation. Our model exceeds heatmap-based HRNet’s AP by 4.4 overall
and 8.4 on keypoints with attributes. With limited data, attributes raise
zero-/one-/few-shot test AP by 1.0/3.4/1.6, respectively, on keypoints
with attributes.
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1 Introduction

Many computer vision tasks involve finding and identifying things in images,
such as objects and their constituent parts. In these settings, the use of multi-
modal vision and language (VL) models can extend the scope of computer vision
models, by replacing a limited set of object classes or part IDs with the ways
that people refer to these objects in natural language. These multimodal mod-
els support open-world object detection by learning rich representations of the
co-occurrences and interactions between words and pixels.

The VL model GLIP [19] was trained for phrase grounding and open-vocabulary
object detection. In this paper, we extend GLIP’s capabilities to object keypoint
detection, i.e., locating the parts of particular objects. For example, given an
image of a bird and a textual caption containing English part names (e.g., “bill,
nape, tail, ...”), our GLIP-KP model detects “objects” corresponding to the parts
by grounding the phrases in the query caption to specific regions or points in
the image (see Figure 1). The advantage of this approach is that it allows us to
use not only the part names but also additional adjectival attributes of the part:
the model can detect the ‘yellow and black crown’ of the goldfinch, or the ‘long
red bill’ of an oyster-catcher.
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yellow and black crown
black left eye

yellow nape

short cone orange bill

solid yellow back

solid yellow breast

multi-colored black and white left wing

solid yellow belly

multi-colored black and white tail

Fig. 1. Example of detecting keypoints with richer descriptions. Attributes are drawn
from CUB [35] images and applied to corresponding keypoints of NABird [33] species.

This work explores the following research questions:

RQ1 Architecture: How well does a VL model for object detection perform
at keypoint detection?

RQ2 Pretraining: What is the advantage of using the pretrained VL model,
along with its image and language encoders?

RQ3 Attributes: How does adding richer descriptive attributes to keypoint
names influence detection performance?

We assess these questions in both a small data/few-shot setting, where the
multimodal pretraining enables identification of some keypoints, and in a fully
finetuned keypoint detection setting. Our system design (Section 3) and the sup-
porting experiments (Section 5) on a bird keypoint detection task (Section 4)
demonstrate three primary findings. First, a multimodal vision and language
(VL) model designed for object detection offers a compelling, competitive key-
point detector (RQ1). In particular, our model outperforms several top-down
pose estimation baselines on the bird keypoint detection task. Second, pretrain-
ing the VL model benefits both test performance and train time (RQ2); fine-
tuning pretrained models provides a modest AP improvement, while training
VL layers from scratch takes 50% more epochs. Finally, leveraging keypoint de-
scriptions enhances VL model test performance (RQ3), whether in data-limited
(zero-/one-/few-shot) or fully finetuned models.

2 Related Work

In this section we situate our work in the context of recent trends in detecting
keypoints, leveraging language for object detection and phrase grounding, and
using descriptive attributes for transfer to novel prediction tasks.

2.1 Keypoint Detection

Keypoint detection for pose estimation is a core computer vision task commonly
performed on human data [21, 1, 18], but it is also applicable to non-human an-
imals [41, 39], including birds [35, 33]. Architectures for keypoint detection typ-
ically distinguish between two-stage and single-stage models. Two-stage models
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are top-down, in that first the body is found using an object detector, and then
the keypoints are identified [36, 32, 20]. Single-stage models process bottom-up,
with all visible keypoints (e.g., in a crowd) found at once [28, 10]. Earlier models
depend on convolutions both for the image processing backbone and further pro-
cessing [36, 32]. More recent models factor out the visual backbone, which can
either use a convolutional or visual transformer architecture to provide features
for the main model [12, 20, 38, 42, 37, 24].

To predict keypoint locations, many model heads typically use heat-map esti-
mation [36]. More recent works have used direct regression [24] or treat keypoints
the same as objects (i.e., as the centers of detected bounding boxes) [25]. Our
work extends the latter approach, treating keypoint detection like object de-
tection. Whereas KAPAO [25] trains a keypoint/object detection network from
scratch using an architecture based on the YOLO [30] object detector, our work
is based on a pretrained multimodal VL model, which allows us to easily incor-
porate few-shot learning and richer keypoint descriptions.

2.2 Open-Vocabulary Object Detection

Open-vocabulary object detection combines language models with object detec-
tion to detect objects beyond a limited set of training object classes. Approaches
typically leverage pretrained models with vision and language aligned at the im-
age level (e.g., CLIP [29] or ALIGN [13]); a difficulty then lies in how to extract
region information, such as bounding boxes, from these image-level models. Early
work used VL models to classify regions found by a class-agnostic region-proposal
model ViLD [11]. OWL-VIT adds visual-token level classification within a VL
encoder to fine-tune these models for object detection with class predictions from
the language encoder [26]. Kim et al. [15] perform additional pretraining at the
region level (using crops), resulting in a VL model with region understanding.
Kuo et al. [16] train only a detector head on top of a large-scale frozen VL model.

2.3 Phrase-Region Grounding

While open-vocabulary object detection aims to find the correct label for novel
objects, text grounding models find the most relevant region in an image for a
given phrase. mDETR [14] extends the detection transformer DETR [3] with
alignment to captions, going beyond object classes to the free text found in nat-
ural language captions. GLIP [19, 43] continues this line of work, based on the
functional equivalence between phrase grounding and object detection. GLIP
excelled at these tasks by fusing the vision and language encodings more deeply
than mDETR, specifically using a dynamic head [6]. FIBER [8] improves further
by fusing the vision and language streams in the backbones. In an orthogonal
approach, PEVL [40] interleaves language tokens and positional tokens (bound-
ing box coordinates) in the text, turning text-region grounding into a masked
language-modelling task. As noted above, this work applies the GLIP framework
to keypoint detection, with keypoint labels (and attributes) being the caption of
the detected keypoint “object”.
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2.4 Descriptive Attributes

Declarative attributes have long been used for few-shot transfer learning to
novel categories [17]. Zero-shot performance of pretrained models depends on
several factors [34, 4]. Vogel et al. [34] find that whether attributes aid instance-
classification depends on the VL model and the specific way attributes are in-
corporated. To reduce annotator burden in specialized domains, Mall et al. [23]
create a method that interactively requests informative attributes for new clas-
sification tasks using pretrained models. Forbes et al. [9] created birds-to-words,
which describes the differences between species in support of a model architec-
ture generating such natural language comparisons.

Although such attributes or descriptions naturally include keypoints among
the noun phrases, none of these models localize them. To our knowledge, this
work is the first to leverage descriptive attributes for keypoint detection, rather
than whole-image classification or object/region grounding.

3 Keypoint Detection System

Our system is based on GLIP [19], which fuses the vision and language represen-
tations within the region proposal network. In this section we briefly review that
model and then describe how it is adapted to GLIP-KP for keypoint detection.

3.1 GLIP Model

The original GLIP (Guided Language Image Pretraining) model [19] combines
a visual backbone with a language backbone, fusing these encodings in an inter-
linking multilayer head [6]. The model is trained with a mixture of two losses.
Classification loss—a binary focal sigmoid loss—rewards agreement between the
fused visual regions and language phrases that are matched in the ground truth.
Localization loss rewards bounding box proposals that overlap with and are
centered closer to the ground truth box.

We base our GLIP-KP experiments on the GLIP-L model, which was pre-
trained on 27M image-text pairs and uses SWIN-L [22] and BERT-base-uncased [7]
as the vision and language backbones, respectively.

3.2 Vision and Language Keypoint Detection

We adapt the GLIP model for keypoint detection by treating each keypoint as an
object to be detected, which is similar to what KAPAO [25] does for YOLO [30].
Annotated keypoints are typically only pixel coordinates, but object detectors
like GLIP are trained to produce bounding boxes. To address the mismatch,
we center a small bounding box around each keypoint. Although our keypoint-
detecting GLIP-KP is trained to reproduce these small boxes, only the box
center is used for evaluating predictions (see Section 5.2). Unlike KAPAO and
other keypoint detection models, GLIP-KP uses language as the query modality,
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rather than symbolic class IDs. Thus “red nape. black left wing.” can be used as
the query caption to locate these two keypoints (cf. Figure 1).

We arbitrarily chose a fixed 40 × 40 box size for all keypoints in all experi-
ments. This setting roughly aligns with the sizes found to perform well for KA-
PAO on human pose estimation [25]. As a feature of the training data (not the
model), varying keypoint box size can trivially be incorporated. Although our
box size is presently fixed, keypoint bounding boxes could vary with the object
size or the precision of a particular keypoint’s location. Our evaluation measure
(Section 5.2) controls for both object size and keypoint annotator precision.

4 Data

The North American Birds (NABirds) data set [33] is our primary training and
testing data, due to its higher data quality and larger size compared to the
commonly used Caltech-UCSD Birds 200 (CUB-200) [35]. NABirds consists of
nearly 50K bird images from 400 different species, organized in a hierarchy.
Our model does not directly use species information for keypoint detection,
but attributes are applied at a species level (more below). The images in the
NABirds data set are annotated with 11 body part keypoints (see Table 1). We
use the official test split (24,633 images, each with a single bird), and take 10%
of the official training split for validation (2,410 images in validation, 21,519 in
training); the validation set roughly preserves class frequency while ensuring at
least one example of each leaf class from the hierarchy.

Descriptive Keypoint Attributes The CUB data set includes fine-grained
attributes, annotated at the image level. Most of these attributes correspond
to keypoints, for example, the bill shape or wing color of a bird. We obtain
species-level attributes by retaining attribute values where the majority of images
(over half) for that species are annotated with the attribute value. For most
species and attributes, there is only one value per attribute, with the exception
of some color attributes (e.g., a magpie has a tail color that is both black and
white). In order to match CUB species names with NABird species label, we use
a manually-obtained many-to-one mapping. This process results in 341 of 555
NABird classes being linked to attributes; roughly 32% of keypoints are assigned
enhanced descriptions through these attributes. This rate is fairly consistent
across the eleven bird keypoints (mean 35.8%, std. err. 0.86%).

To convert image attribute values to keypoint descriptions for GLIP-KP
captions, we apply a set of simple textual transformations. The relevant im-
age attributes (has_bill_length, has_back_color) are matched to their cor-
responding keypoints (bill, back). The color attribute values are preserved, and
comparative attributes are minimally edited (e.g., the bill length attribute is
changed from shorter/longer_than_head to short/long, respectively). We ar-
range multiple attributes for a single keypoint according to standard English
adjectival order [2]: length, pattern, shape, color, in order to match language
model expectations. Table 2 gives examples of the resulting descriptive captions.
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Table 1. Part keypoints with their hierarchically ordered attributes and annotator
standard deviations ×100, relative to the bird bounding box dimensions.

Keypoint Label σX σY Attributes

bill 1.998 1.340 length / shape / color
crown 3.255 2.065 color
nape 2.956 3.479 color
left/right eye 1.068 0.927 color
belly 4.810 4.537 pattern / color
breast 3.132 4.340 pattern / color
back 3.934 3.372 pattern / color
tail 4.335 3.972 pattern / shape / (under, upper) colors
left/right wing 6.017 5.097 pattern / shape / color

Table 2. Examples of descriptive attributes for each keypoint (first instance in bold).

short all-purpose grey bill. long needle black bill. dagger orange and black bill. spatulate yellow bill.
black and white crown. blue crown. brown and buff crown. yellow and black crown. red crown.
black and white nape. brown and white nape. brown and black nape. buff nape. blue nape.
black and red left eye. black right eye. red left eye. yellow right eye.
striped brown and white belly. multi-colored yellow belly. solid belly. spotted brown and white belly.
multi-colored yellow and black breast. striped yellow and black breast. white breast.
olive back. striped brown black and buff back. solid blue back. multi-colored grey and yellow back.
black and white black and white tail. solid notched tail. notched brown tail. white black tail.
spotted pointed black and white left wing. striped rounded brown black white and buff right wing.

5 Experiments

We perform experiments training the model on several variants of the data.
In this section we describe the general training and evaluation regimes before
presenting the experimental results.

GLIP-KP is trained to predict keypoint box locations given a caption contain-
ing the keypoint labels. We train with two initial conditions for model weights
and three data variants:

Symbols To isolate and impede the semantic contribution of the model’s lan-
guage stream, each keypoint label is replaced by a single character, forcing
the deep fusion layers to rely on the visual characteristics and a symbol with
little intrinsic meaning. We omit characters that might suggest a description
of visual shape (i.e., x, s, or t). Caption: “f. g. h. k. m. n. p. q. r. w. y.”

Labels The basic keypoint labels are used in the text prompt encoded by the
language model. Caption: “bill. crown. nape. left eye. right eye. belly. breast.
back. tail. left wing. right wing.”

Labels+Attributes Available descriptive attributes precede the keypoint la-
bel. Caption: “short cone buff bill. grey crown. grey nape. ...” (see Table 2).

In a “Finetune” initial condition, we begin training using the GLIP-L pre-
trained weights. For “Scratch”, the deep fusion layers are randomly initialized
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while the language backbone uses the original BERT-base-uncased model pre-
trained weights and the vision backbone uses the SWIN-L pretrained weights.

To benchmark our overall approach to keypoint detection (i.e., vision and
language with attributes) we also use the MMPose library [27] to train and test
three methods that predict keypoints via heatmaps: HRNet [32] and two variants
of the Simple Baseline model [36] with ResNet-50 [12] and SWIN-L [22] vision
backbones.

5.1 Training Details

The validation metric is mAP (Max Dets = 100); see the next section (5.2) for
details. The base learning rate begins at 1e–5 and is adjusted by a factor of 0.5
after four epochs with no validation set improvement; we establish a minimum
learning rate of 1e–7. Training is stopped altogether after 10 epochs without
improvement. Apart from one-shot learning, all models are trained with a batch
size of three images (the maximum afforded by our compute setup). One epoch
on the full training set takes four hours using one NVIDIA RTX A6000 GPU.

All the keypoints are included together in a single query caption that is to be
encoded by the language model. This allows the complete context of the query
(including attributes, if available) to influence the encoding. Importantly, we
randomly shuffle the keypoints within the captions for each training batch. The
model should thus be forced to learn to use the language embedding, rather than
simply relying on a positional encoding of the tokens to represent the part.

Following earlier findings that unfreezing visual backbones during finetuning
can improve performance [31], the SWIN-L model visual backbone is frozen at
layer 2 (subsequent layers are trainable), and the BERT-base-uncased language
backbone is not frozen (all layers are updated).

To randomly augment the training data, images may undergo a horizontal
flip (with the necessary alteration to the sagittal wing and eye keypoint labels)
or may be resized to between 640 and 1024 pixels (preserving aspect ratio).

For the baseline comparison models, we retain the default parameters: input
object size (cropped bird) is 256× 256 and heatmap size is 64× 64. All models
train for 210 epochs and the best checkpoint is selected using the validation set.

5.2 Evaluation

Because our system is a hybrid of object and keypoint detection, we hybridize
object and keypoint detection evaluation measures for our evaluation. Compared
to traditional keypoint detection, there are two main differences in our setup:
1) not all keypoints must be predicted on the image, because the model can
decide not to ground a keypoint caption label; 2) multiple detections can be
predicted for each label, not just the single best detection. There is also the su-
perficial difference between predicting bounding boxes versus pixel coordinates;
we simply take the center of each box as the predicted keypoint location.

Traditional keypoint evaluations are limited because they only measure per-
formance on keypoints annotated as visible. Thus, no false positives result from
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predicting keypoints that are absent from an object; false positives only occur if
a keypoint is matched to the wrong parent object. With only a single instance of
the object in each NABirds image (and many other pose estimation data sets),
these types of false positives are not possible. This omission makes precision
metrics relatively meaningless in the traditional keypoint evaluation scheme.

By definition, recall likewise ignores false positives. When considering only
the best-scoring detection for each keypoint, recall is therefore equivalent to
accuracy (percentage of correct keypoints, or PCK), another traditional metric.

Ultimately, the traditional evaluation schemes can be misleading when a
system is to be applied to images where the keypoint visibility is unknown and
false positives are to be minimized (as in cases intended for human training).

Thus, to evaluate keypoint detections, we combine elements of the COCO
evaluation frameworks for both keypoints and object detection. Specifically, we
replace the COCO object detection intersection-over-union (IoU) calculation
for matching bounding boxes with a variant of the COCO keypoint detection
challenge’s object-keypoint-similarity (OKS) calculation. The COCO OKS uti-
lizes the square root of the object area as a “scale” factor so it can account for
size-normalized annotator variation in keypoint locations. Rather than collapse
height and width, we retain these scales separately, noting that the annotator
variation along the x and y axes is anisotropic (see Table 1).

To classify a detection as correct or incorrect, we must first measure the rela-
tive detection difference d = p−t between the prediction p and the ground truth
point t. The “error” e in this difference is normalized by a factor incorporating
both the object size (w, h) and the annotator variation (σX , σY ),

e =

[
dx
kxw

,
dy
kyh

]
, (1)

where k = 2σ is the per-dimension scaling factor. Passing this error through an
unnormalized Gaussian,

s = exp

(
−1

2
∥e∥2

)
, (2)

produces an interpretable object keypoint similarity (OKS) with s ∈ (0, 1], like
the IoU. This setup “means that 68%, 95%, and 99.7% of human annotated
keypoints should have a keypoint similarity of .88, .61, or .32 or higher, respec-
tively” [5], according to the COCO keypoint evaluation description. In summary,
we use the traditional COCO evaluation scheme for objects, replacing the IoU
criterion with our OKS (2).

We report a subset of the COCO evaluation metrics for all object (bird) sizes:

mAP Mean average precision with OKS=0.50:0.05:0.95
AP0.50 Average precision at OKS=0.50 (a “loose” metric)
AP0.75 Average precision at OKS=0.75 (a “strict” metric)
AR Average recall with OKS=0.50:0.05:0.95

Except when given for individual keypoint labels (i.e., Figure 3), these metrics
are reported as averages over all the keypoint labels.
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Fig. 2. Training metrics versus train time on validation data. See discussion below.

While we report AR for some comparability with keypoint detectors designed
to optimize PCK, we remain more interested in the AP metrics as sensitive to
both recall (the true positive rate), and precision (true positives among predicted
positives). To capture the overall fidelity of the model, we treat the keypoints as
if they were independent objects and evaluate accordingly.

5.3 Results and Discussion

In this section we present the results of training our GLIP-KP model on the
three data variants (Symbols, Labels, Labels+Attributes) with the two initial
conditions (Finetune and Scratch).

To gauge the transferability of VL pretraining, we evaluate the “Finetune”
models under limited training conditions. From the results in Table 3, we see
that in the zero-, one-, and few-shot cases, using labels greatly outperforms the
non-semantic “Symbols” variant. In most instances, adding attributes provides
a performance boost, particularly among the keypoints that have them. How-
ever, “Symbols” surprisingly outperforms all others by a fairly wide margin at
one epoch of training on all the data. We hypothesize that at this early stage
of training, the symbolic model can focus more directly on the keypoint detec-
tion task, while the models using language might be hampered by ambiguous
semantics in the keypoint names (e.g., ‘crown’, ‘left wing’).

This performance boost evaporates by the second epoch, as can be seen in
Figure 2, which illustrates some of the evaluation metrics on the validation data
as training progresses. Aside from epoch 1 (Fig. 2(a)), the “Symbols” model lags
by a wide margin, particularly in the ‘broad’ case (Max Dets=100—Fig. 2(b,d)),
when multiple keypoint detections are considered for each label; this demon-
strates the ultimate benefit of involving language in keypoint detection. Models
trained from scratch lag behind initially in the ‘broad’ case, but they do even-
tually catch up to the finetuned models in later epochs (Fig. 2(b)) and actually
excel on the ‘loose’ metric (Fig. 2(d)). By contrast, finetuned models outperform
in the ‘narrow’ case (Max Dets=1—Fig. 2(c,e)), which evaluates a single predic-
tion per keypoint. Notably, the narrow metrics peak early before overfitting sets
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Table 3. Held-out test data results (“Finetune” initial condition) for zero-, one-, and
few-shot training as well as one full epoch of all the training data. One-shot (1 example
of each keypoint) and few-shot (10 examples of each keypoint) are both trained for 500
iterations over the limited data, reporting averages and standard errors of ten runs.

All Data
Broad: Max Dets = 100 Narrow: Max Dets = 1

Data mAP AP(0.5) AP(0.75) mAP AP(0.5) AP(0.75) AR

Ze
ro

Symbols 0.20 0.52 0.13 0.13 0.34 0.08 1.95
Labels 9.46 16.30 9.03 7.36 12.36 7.11 22.70
Labels+Attr. 9.74 16.63 9.33 7.58 12.83 7.29 23.64

O
ne

Symbols 21.40 ±0.38 31.73 ±0.51 21.92 ±0.40 17.79 ±0.36 26.85 ±0.51 18.06 ±0.37 35.65 ±0.45

Labels 28.97 ±0.18 43.57 ±0.23 29.68 ±0.20 25.04 ±0.18 39.33 ±0.25 25.20 ±0.20 47.32 ±0.24

Labels+Attr. 28.74 ±0.22 43.08 ±0.14 29.50 ±0.27 25.62 ±0.23 40.17 ±0.15 25.82 ±0.29 49.38 ±0.20

Fe
w

Symbols 26.23 ±0.33 36.81 ±0.37 27.35 ±0.36 23.95 ±0.34 36.10 ±0.43 24.42 ±0.36 44.07 ±0.39

Labels 35.46 ±0.09 48.34 ±0.17 37.19 ±0.10 33.84 ±0.08 49.86 ±0.11 34.81 ±0.10 57.88 ±0.05

Labels+Attr. 35.43 ±0.13 49.83 ±0.15 36.96 ±0.15 33.07 ±0.12 49.51 ±0.13 33.93 ±0.14 57.17 ±0.10

E
po

ch Symbols 56.70 68.45 60.47 62.74 81.57 66.93 74.50
Labels 48.10 58.36 51.33 51.41 67.76 54.80 73.17
Labels+Attr. 48.14 58.42 51.35 51.81 68.10 55.23 73.40

Only Data with Attributes

Ze
ro

Symbols 0.10 0.25 0.05 0.07 0.17 0.03 1.93
Labels 4.95 8.44 4.85 4.14 6.88 4.13 22.89
Labels+Attr. 6.09 9.58 6.11 5.09 8.08 5.10 25.56

O
ne

Symbols 14.54 ±0.30 22.50 ±0.44 14.77 ±0.32 12.99 ±0.29 20.32 ±0.44 13.11 ±0.30 37.75 ±0.47

Labels 19.05 ±0.17 30.80 ±0.24 19.02 ±0.18 17.24 ±0.17 28.70 ±0.25 16.97 ±0.18 49.23 ±0.26

Labels+Attr. 21.76 ±0.20 33.61 ±0.28 22.15 ±0.21 20.59 ±0.20 32.41 ±0.29 20.81 ±0.21 52.43 ±0.11

Fe
w

Symbols 18.05 ±0.27 27.36 ±0.34 18.44 ±0.30 17.02 ±0.28 27.24 ±0.39 17.01 ±0.30 46.21 ±0.39

Labels 23.89 ±0.13 35.90 ±0.23 24.43 ±0.13 23.24 ±0.11 37.10 ±0.20 23.24 ±0.12 60.09 ±0.07

Labels+Attr. 26.22 ±0.22 40.31 ±0.30 26.70 ±0.24 24.88 ±0.22 39.85 ±0.30 24.95 ±0.24 58.65 ±0.11

E
po

ch Symbols 48.56 64.76 51.94 53.74 75.77 57.00 75.84
Labels 37.37 50.28 39.76 40.33 57.85 42.48 74.78
Labels+Attr. 39.60 52.23 42.30 42.70 60.07 45.21 75.36

in. However, additional training helps in the broad cases, where the focal loss
likely shifts to improving all predictions.

Table 4 shows the test results when training proceeds to completion on all
the data. In the narrow case, the attributes provide a modest performance boost
in the data overall, but it is more pronounced among the data with attributes.
Attributes raise the mAP by about 6 in the broad case and 2.7 in the narrow
case. Considering that AR is fairly comparable across most models, it seems the
descriptive attributes largely help eliminate false positives and/or improve the
prediction confidences.

The HRNet and SimpleBaseline results lag far behind our GLIP-KP model
as well, regardless of visual encoder. We hypothesize this may have to do with
the use of a heatmap head for prediction, which offers limited location preci-
sion. (KAPAO outperforms the SimpleBaseline by a similar degree on human
pose estimation.) Since our GLIP-KP uses the SWIN-L visual backbone, we can
reasonably compare it to the SimpleBaseline equipped with SWIN-L. Using the
“Symbols” data eliminates the model’s semantic associations, yet we still find
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Table 4. Results for fully-trained models on held-out test data.

All Data
Broad: Max Dets = 100 Narrow: Max Dets = 1

Data VL Weights Epch mAP AP(0.5) AP(0.75) Epch mAP AP(0.5) AP(0.75) AR
Symbols Finetune 51 69.02 84.90 73.71 11 68.79 87.46 73.54 79.70
Labels Scratch 44 70.07 87.63 74.94 14 67.64 87.16 72.38 79.21
Labels Finetune 40 69.57 86.12 74.33 10 68.88 87.51 73.65 79.92
Labels+Attr. Scratch 39 69.95 87.77 74.74 14 67.85 87.42 72.64 79.06
Labels+Attr. Finetune 34 69.75 86.92 74.43 9 68.92 87.69 73.80 79.67

ResNet50 + Heatmap
}

SimpleBaseline [36] 40 63.58 84.78 68.37 75.67
SWIN-L + Heatmap 180 62.95 84.51 67.52 75.26

HRNet [32] 130 64.53 84.84 69.63 77.71

Only Data with Attributes
Symbols Finetune 51 57.82 78.69 61.74 11 59.31 81.90 63.38 80.63
Labels Scratch 44 57.94 80.70 61.65 14 57.40 80.80 61.03 80.03
Labels Finetune 40 57.87 79.44 61.62 10 59.03 81.66 63.03 80.72
Labels+Attr. Scratch 39 63.99 86.12 68.48 14 60.10 83.30 64.19 79.87
Labels+Attr. Finetune 34 63.87 85.65 68.30 9 61.76 84.21 66.14 80.70

ResNet50 + Heatmap
}

SimpleBaseline [36] 40 53.59 77.60 57.09 76.85
SWIN-L + Heatmap 180 52.30 77.07 55.37 76.42

HRNet [32] 130 53.35 76.04 57.18 78.78

GLIP-KP exceeds the mAP of the SimpleBaseline by 7.0 in this case. This boost
confirms the value of formulating keypoint detection as object detection

Tying Table 4’s “Epoch” columns to what Figure 2 shows, finetuning the
VL weights requires fewer epochs than training them from scratch, and training
with attributes is generally faster than without (for the broad evaluation). The
narrow case requires the least time, with validation performance peaking early.

Figure 3 highlights the relative difficulty of the various keypoints and the
relative benefits of adding attributes as the amount of training data varies.
Higher-performing eyes and bill are well-localized (at the center and tip, re-
spectively) compared to other labels, bearing out lower deviations in Table 1.
With a fully-trained model (“All” data), attributes benefit every keypoint label.
The crown label benefits significantly from attributes in the one- and few-shot
learning cases, perhaps because attributes help resolve semantic ambiguity.

6 Conclusion

Vision and language models pretrained for object detection or phrase grounding
perform well in a wide-variety of scenarios. This work demonstrates that such
models can be adapted for keypoint detection as well. We treat the keypoint
detection task as a special case of object detection, albeit with small, fixed-size
bounding boxes as the prediction targets. Using GLIP-L as the base model, we
demonstrate compelling keypoint detection performance, outperforming com-
parison models even when the language capabilities are hobbled. Moreover, its



12 J. Weinman et al.

mAP [Max Dets = 1]

52.6

54.2

55.2

56.5

52.6

56.1

74.1

73.7

62.7

68.4

73.3

0 20 40 60 80

mAP

r. wing

l. wing

tail

back

breast

belly

r. eye

l. eye

nape

crown

bill

Labels+Attributes versus Labels

-5 0 5 10

r. wing

l. wing

tail

back

breast

belly

r. eye

l. eye

nape

crown

bill

All

Few

One

Zero

Training Data

Fig. 3. Per-keypoint test performance on the Finetuned Labels+Attributes model. Ab-
solute mAP on the fully trained model (left) and comparative performance of the
Labels+Attributes versus Labels (right) for various training conditions.

language flexibility ultimately allows us to further improve results by incorpo-
rating English-language descriptive attributes of the target keypoints.

We also propose an evaluation methodology better-suited to keypoints-as-
objects, replacing IoU with a variant of object keypoint similarity (OKS) in
the standard COCO object detection framework. We hope the familiarity of
the COCO framework and the benefits of considering false positives in keypoint
detection will lead to wider adoption of such metrics.

In the future, we hope to investigate not only joint object detection (i.e., the
bird bounding box) in the model, but also fine-grained species classification. In
addition to the descriptive keypoints, the language-based model may be able to
share representations (and better distinguish) among species with similar names
and appearances, such as the red-shouldered hawk and the red-tailed hawk.
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